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The use of single determinantal approximate molecular wavefunctions of the LCAO MO NDO 
type for the calculation of the momentum density p(p) and the radial momentum density distribution 
J(p) is discussed. In each case, these expressions should be orientationally invariant and the momentum 
density should be normalized. Combining these two requirements, it is shown that only two approxi- 
mations are physically significant: 

(1) NDO wavefunctions are used and p(p) and l(p) are approximated respectively up to an INDO and 
a CNDO level; 

(2) Overlap integrals are explicitly taken into account when solving the Roothaan SCF equations or 
deorthogonalized NDO functions are employed, together with the unapproximated expressions. 
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1. Introduction 

Since the  ear ly  1940's, me thods  o f  ob ta in ing  m o m e n t u m  space wavefunct ions  
have  been  the subject  o f  n u m e r o u s  inves t iga t ions  [1].  

Two  essent ia l ly  different  ways  have been exp lo red :  e i ther  Schr6d inger ' s  
equa t ion  is solved d i rec t ly  in the m o m e n t u m  space,  or  the  m o r e  easi ly accessible 
pos i t i on  space wavefunc t ion  is t r ans fo rmed  to the m o m e n t u m  space via  the  D i rac  
t r ans fo rma t ion .  

The  " d i r e c t "  a p p r o a c h  has  only  been achieved so far  for  ex t remely  s imple 
systems such as the  h y d r o g e n  a t o m  [2],  the he l ium a t o m  [3]  and  the hydrogen  
molecule  posi t ive  ion  [4].  The  extens ion o f  the m e t h o d  to many-e l ec t ron  a toms  
and  molecules  has  n o t  been real ized h i ther to  due  to the c o m p u t a t i o n a l  difficulties 
encoun te red  in the t r ea tmen t  o f  the  in tere lec t ronic  in te rac t ion  terms.  

On  the o ther  hand ,  the cur ren t  ava i lab i l i ty  o f  pos i t ion  space wavefunct ions  in 
several  degrees  o f  a p p r o x i m a t i o n  bo th  for  a t o m s  and  molecules ,  and  the iso- 
m o r p h i c  na tu re  o f  the  D i r a c  t r a n s f o r m a t i o n  [5]  makes  the  " t r a n s f o r m a t i o n  
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method" extremely suitable for the studies of momentum space properties of 
large systems. 

After the pioneering article of Podolsky and Pauling [6] on the momentum 
space wavefunctions of hydrogenlike atoms, the Chemistry of Momentum Space 
[lb] started effectively in the early 1940's with a series of papers by Coulson and 
Duncanson [7]. This study, although carried out with rather crude position space 
wavefunctions, contains a lot of qualitative conclusions which still serve as a guide 
for the interpretation of the more recent calculations. 

Investigation of molecular momentum space properties has been a rapidly 
expanding field in the last years. Polyatomic LCAO MO SCF ab ini t io  wave- 
functions have been transformed for the first time by Epstein [8] ; the momentum 
distributions and Compton profiles for boronhydrides [9] [10] and hydrocarbons 
[ 11 ] were interpreted in terms of contributions from localized molecular orbitals. 
Bonding effects in small molecules have also been studied [12] and Kaijser e t  al. 

explored the effect of excitation and ionization on the momentum density maps of 
N 2 [ 13]. The use of Gaussian expansions of STO's for the calculation of momen- 
tum distributions in polyatomic molecules was introduced by Tanner and Epstein 
[14] and further investigated by Hirst and Liebmann [15]. A critical examination 
of the possibilities of obtaining information on atomic and molecular momentum 
properties from experimental Compton scattering data has been given [16, 17]. 
Recently, a LMO study of the momentum distribution for a series of hydrocarbons 
with special attention to the properties of ls inner shell electrons has been pub- 
lished [18]. Detailed studies of the momentum distribution and the Compton 
profile of the water molecule have been achieved [19-21] and the influence of 
hydrogen bonding investigated [22]. Recently various detailed investigations on 
the momentum space properties of small molecules were undertaken by Tawil 
[23, 24] and Kaijser [25]. 

All this shows that momentum space properties undoubtedly will receive 
more and more attention in forthcoming years. Approximate wavefunctions of the 
NDO type (CNDO [26, 27], INDO [28]...) which have proved to be very valuable 
in comparative studies of position space properties of organic molecules, have 
been used in some momentum space calculations by Ahlenius and Lindner [29] 
while this work was submitted for publication. Our aim is to analyse here the 
different kinds of NDO approximations which are physically significant in the 
field. Using STO's as atomic basisfunctions and a simple straightforward formal- 
ism, the explicit general expressions for the total momentum density distribution 
p ( p )  and the radial momentum density distribution I ( p )  for a single determinantal 
LCAO MO wavefunction for a closed shell polyatomic molecule are written in a 
form suitable for the direct introduction of the NDO approximations. It is con- 
cluded that only a limited number of possibilities subsist if orientational invari- 
ance and the normalization condition are both taken into account. 

2. General Theory and Formalism 

The Dirac transformation of a N particle single determinantal position space 
wavefunction 7 s = ~ ( r l  , r z . . . .  rN) to the corresponding momentum space wave- 
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function • = qo(Pl, P2 . . . .  PN) is given by [30] (atomic units are used throughout) 

//1'3N/2 [ N ] 
• ( p , , p 2 , . . . p N ) = ~ )  5 e x p - - i k ~ = l P k ' r  k ~r/(r l ,  r 2 . . . .  r N ) . d r l d r 2 . . . d r  N . (1)  

Due to the isomorphic nature of this transformation [5], the wavefunction so 
obtained is also a single Slater determinant built up with a set of momentum space 
molecular orbitals q~(p), related to the position space MO's ~'i(r) by the expression 

( Ix)  3/2 
c~(p) = \~-~] I ~ki(r) exp [ - ip. r]dr. (2) 

Expanding the position space MO's as a linear combination of atomic orbitals 
{Xz}, according to 

= Y, (3) 
2 

and introducing the general and local atomic position space and the (Px, Py, P~) 
momentum space coordinate systems defined in Fig. 1, we can write qS~(p) more 
explicitly as 

( 1 "~a/2 A 
~b~(p) = \ ~ ]  ~A exp ( -- ip. rA) ~ Cag ~ z~(r) exp ( -- ip. r)dr (4) 

where the integration over r is performed in the local coordinate system on atom A, 
r A being the position vector of atom A in the general coordinate system (X, Y, Z). 
Let us now define 

fa(P) = ~ Za(r) exp ( -  ip. r)dr (5) 

and introduce the explicit form of a STO )~x [31] characterized by the three 
quantum numbers (na, lx, rnx) and the orbital exponent {a into (5); by applying 
the spherical wave expansion theorem [32] 

e - iP~=4g  ~ (--i)9,(pr) ~ Ylm(Op,~)p)Ylm(Or,(or) (6) 
1=0 m 

where the~ are the spherical Bessel functions, m running over all the real spherical 
harmonics Y~ with the same l quantum number, we obtain: 

A(P) =f,,,,,m,(P, 0p, ~bp)= (-if*g,,,,~(p)Y,,=,(O v , ~p) (7) 

with 
co 

(2(~)n*--+~ 4n 5 j,,(pr)r "~+ le-;*rdr. (8) 
o 

The radial parts gn~  can be obtained by straightforward integration. Explicit 
expressions for momentum space STO's fa(p)" ls to 3d with Ylm normalized to 4n 
have been given by Epstein [33]. 
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The total momentum density p(p) for a closed shell molecule, described by a 

Obviously, we have 

p(p) = p(1)(p) + p(:)(p) + p(a)(p). (15) 

In the case of the CNDO approximation, only monoatomic diagonal contribu- 
tions are taken into account 

pCNDO(p) = p(1)(p). (16) 

In the case of the INDO approximation, the off-diagonal monoatomic contribu- 
tions are also considered and accordingly we have 

plNDO(p) = pCNDO(p) d- p(2)(p). (17) 

single Slater determinant is defined as 

o c c  

p(p) =2  2 Iq~,q~)l 2. (9) 
i 

According to Eqs.(4), (5) and (7) we obtain 

( 1 ) 3  . B 
p(p)= ~ 2 2 exp[--ip.(vA--rB)] 2 2 P~,~(i) t~-'~ x 

A B X a 

gnxlz(p)gn~t=(p)Yt;~ma(Op, Op) Yl~m~(Op, ~p) (10) 

where Pz~ are the elements of the P matrix and are defined as 

o c c  

Pz~=2 ~ CziC,i. (11) 
i 

In order to have p(p) in a form suitable for the direct introduction of the NDO 
approximations, we decompose expression (10) into three parts: 

1) diagonal monoatomic contributions, p(1)(p) with 2 = a on atom A 

£ P.a.Xgn;~lz(P) rl,~m~(Op, ~)p). (12) 
A 2 

2) off-diagonal monoatomic contributions p(Z)(p) with 2 ¢ a on atom A 

P )(P)=~3~3 i ~ 4<, Pz'~gnzt'(P)g"=t"(p)rl~'m~(OP' Op) x 

1 
3) diatomic contributions p(3)(p) where A ¢ B 

p(3) fn]=  1 A B 
,.e, 4~z3 E Z 2 2 Pz~g,,ztx(P)g..,~(P)Yl~m~(Op, ~)p)Yt~m.(Op, 4)p) x 

A < B  z a 

COS[p.(ra--rA)+2(l~--lz) ]. (14) 
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If we now turn to the radial momentum density distribution I(p) for a closed shell 
molecule, we have [34] 

I(p)dp= sin OvdO p dc~pp(p) p2dp. (18) 
0 

According to (10) this may be written as 

I(p)=P 2 ~ Z Z Z Z Pz~g.~l~(P)g.~l~(P)(i) ~-la x 
A B R a 

2~ 

i sin OpdOp ~ dd~p exp [--ip.(rA--rs)]Y)~m~(Op, ~)p)Yi~m~(Op, Op) (19) 
0 0 

which obviously can bc decomposed into a sum of mono- and diatomic contribu- 
tions 

I(p) = I (p )~  N° + IDIAT(p). (20) 

Taking the terms where A = B we have, due to the orthonormali ty of  the spherical 
harmonics 

A )~ A<a 

The evaluation of  the diatomic term is readily achieved by using the spherical 
wave expansion for exp [ - ip. (r A - rB)] ; this yields 

[DIAT(p)=p2( I )3  A B 
Z Z  Z Z P~,g.~l~(p)g.~t~(p)(i) l~-ta4n x 
Av~B ~ a 

Z (--i)9"l(prAB)Ylm(OrA--rn' q~FA--PB ) X 
l=Om 

I J' sin OpdOpd(~p Y~m(Op, 0.) Y~m~(Op, Op) Y~m~(O~,, 0.)" (22) 

A product of  real spherical harmonics on one center can however be expanded as 
a finite linear combination of real spherical harmonics 

I+l' 
rtm(Op, @,) Y,.,.,(Op, Op) = 2 Z u,,,m" CLll' YLM(Op, 49p) (23) 

M L=lt-rl 

where the r - i ~ '  -~zar are properly chosen coefficients. Combining Eqs.(22) and (23) 
we obtain 

IDIAT(p)=p2(~)3  A B 

A~B ~ a 

( i)t"-t~ ~ Z (-i)~J't(prAs)Y,m(Ora-~. , q~YA--FB ) X 
l=Om 

~, C~"~t~ ''~ y ~ Y~,,(Op, 4p) Yt, M(Op, 4p) sin OpdOpd¢p. (24) 
M L 
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Taking again account of the orthonormali ty of real spherical harmonics and 
observing that according to the parity of these functions [35] 

YLM(O . . . . .  ~brn-r.) = (--1)LYLM(0r.--~A, ~b~.--~n) (25) 

expression (24) reduces to 

IDIAT(p)=p2 1 ~ ~ ~ Px~g.~t~(P)g.~(P) x 
A < B  

. . . .  ? l M L CLl~l~ JL(prnB) FLM(0~_~, ~b,.~ _ ~) cos ~ (L + l x -  l~) . (26) 

If  we now apply the CNDO or INDO approximations to I(p) we clearly have 

ICN°°(P)=llN°°(P)=P2(1) ~n ~P~xg~t~(P)'~ 2 (27) 

Indeed, due to the presence of  the Kronecker  deltas in the second term of  Eq.(21), 
off-diagonal monoatomic contributions are equal to zero if an atomic valence 
basis set is used. The expressions for p(p) and I(p) derived above in their unapproxi- 
mated and NDO approximated forms, are very suitable for computer program- 
marion. 

3. Orientational Invariance and Normalization Conditions in the Momentum Space 

Let us calculate the total momentum density p(p) at a given point p in the 
momentum space coordinate system (Px, Py, Pz) for a given orientation of the 
molecule in the position space general coordinate system (X, Y, Z)  of Fig. 1. If we 
subject the molecule and the impulse vector p to the same rotation ~ ,  respectively 

B 

P Y 
Y 

Fig. 1. General (X, I1, Z) and local atomic (Xml Ym, Zm) positi°n space coordinate systems and 
momentum space coordinate system (Px, Py, P~) 
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in the (X,)I,  Z )  and the (Px, Py, P~) coordinate systems and recalculate the 
momentum density p' at the point p' given by 

p '  = ~ p  (28) 

then we clearly must have 

p'(p') = p(p). (29) 

This demand is the momentum-space counterpart  of the orientational invariance 
requirement of the electron density in the position space [36]. 

Decomposing p'(p') into monoatomic and diatomic terms we have, according 
to Eq.(17) 

p,MOYO(p,) = p,,NDO(p,) = p,CNDOQp,) + p,(Z)(p,) (30) 

which, reintroducing the LCAO expansion coefficients, can be written (considering 
Eqs.(12), (13)) as 

, _ ( 1 ) 3  occ 
E E E  E E E  E 2 E C';AIAmA'i× 
A nA lA mR nX lX m'A i 

CnXIXmX, i#,A'A(P)gnXIA(P) Ytama(Oe ' , qbp,) r, xmx(Op, , Cp,)(i)lk-tA. (31) 

The diatomic term then can be writ ten(according to Eq.(14)) as 

occ 

- -  CnAIAmA, i E Y, E Z 2 Z 2 E ' × 
A < B n A l A m A n B l B m B i 

CnBl . . . .  ignAIA (P)gnBIB(P)  YIAmA (O p ' , ~) p') YIBmB(Op ' '  ~)p') X 

IV' ' ' = (lB--1,)] (32) cos .(r - r A ) -  ~ 

The summation on m A runs over the 2/A + 1 real spherical harmonics with the 
same l A quantum number. If the molecule is subjected to a rotation ~ to which a 
[3 × 3] Cartesian coordinate transformation matrix is associated, noted as 
(0~= 1), then the molecular orbital coefficients C~i where 2 refers to the atomic 
orbitals with the same l quantum number of atom A, transform according to 
[(2/A + 1) × (2lA+ 1)] matrices noted as (OZ=~") -1 

C'~,~.,= ~ (O'~)[.)qC.a,Aq.~ (33) 
q 

Furthermore, defining F.A~AmA(p') as 

FnAtAmA(P') =gnAtA(P') Y'AmA(Op "' ~)p') (34) 

we can write, according to Wigner [37] 

F.A'~mA(P')=F,,AZA,,A(GdP)='~-IF, AzA,.A(P)= ~ ,(O'A~-I, ~aq F.~,Aq,t.,.t"~ (35) 
q 
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Having in mind that p'. (r~ - r~) =p .  (rB - rA) we obtain for p,INDO(p,) and p,DIAT(p,) 

2 2 2 2 2 2 2 2 2  vro'n'-I ~ / ,  \ 7mAq~ ._ .nA l Aq , i  X 
A n A  n'A IA Ij~ m A  m'A i q 

£ IA -- 1 ( O I A ~  1 y gO 
r s 

IX - 1  ~, ( 0 ) ~ x ,  Ya~(Op, ~bp)(i) a -  a. (36) 
t 

,, 1 
\ t l  ) m A q ~ ' ~ n A I A q ,  i 

A < B  nA  l A  m A  IB m B  " 

Z IB -- 1 (0)m.~C..z.~,~g..t.(p)g.B~.(p ) 2 "--(()IA]--I"mAS × 
r $ 

1 Yas(Op, $p) Z (n'"~-~ r,.,(Op, Op) cos ( l . - / a )  (37) \ ~  ]mBt 
t 

Due to the orthogonality of the 0 ~a, O a  and 0 '~ matrices these expressions 
reduce to 

p,,NDD(p,) = ( 1 )3 occ 
2 Z Z Z Z Z Z 2  Z c.a,~.,%,~r.,× 
A n A  l A  n k  l X  q r i 

9",.'A(P)g"x'A(P) Y,.q(Op. @,) Y,A~(Op. q~p)(i),x - , .  (38) 
L o c c  

¢o.n~,)= E E E E E E E E 2  E C°A,.~.,C..,.~.,× 
A <B nA IA nB 1B q r i 

, . (  ,cos[. ,n,] (,9, 
so that 

p,~NDO(p,) = p,NDO(p) 
p,~,nT(y) = pDI*T(p). (40) 

Hence, it appears that the INDO approximation to p(p) is orientation invariant. 
However, if momentum densities are approximated up to the CNDO level, then 
we have, after rotation 

 CNOO . (1)3 
( 0 ) m A p C n A l A p ,  i X 

A nA IA mA i p 

(O'n);')q C"A'nq, 'g"A'A(P) g"Aa(P) × 
q 

~, tOa~-i  y r 0 t Jma~ ZA~ p' (Op) ~ (&*)~)t YZ,t(Op, (%)" (41) 
s t 

which obviously cannot be further simplified. Overlap densities of the form 

g,AIAYIA~,q,,AZAYtAt with tCs 

which do not occur in the expression for pCNOO(p) appear and will be neglected 
in the CNDO theory; accordingly different numerical results will be obtained. 
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According to the definition of the radial momentum density distribution 
(Eq.(18)) and bearing in mind that plYOO(p) is orientation invariant, it appears 
clearly that I(p) as given by Eq.(27) will satisfy the same requirement if approxi- 
mated up to a CNDO level. 

The nature or extent of the NDO approximations should also lead to expres- 
sions for p(p) which obey the normalization condition, i.e. 

p(p)dp = N (42) 

where N is the total number of (valence) electrons present in the molecule. Let 
us first show that the value of the overlap integral between two atomic basis 
functions remains unchanged when going over from the position into the momen- 
tum space. These integrals will be noted respectively as S~ and SuPv. If tlu(p ) and 
t/~(p) are the momentum space transforms of )~u(r) and )~v(r), then we have, accord- 
ing to Eq.(1) 

Su~ - ~ rl, (p)rl~(p)dp = ~ ~ ~ ~ e iv ')~*u(r)e-iv ~')~(v')drdr'dp 

=f  I drdr'x*~(r)x~(r') ~ I e iv( ' -")dP (43) 

or introducing the Dirac 6-function [38], we obtain 

f . . . .  drdr zu(r))~v(r )¢5(r- r') = I dr)~u(r))~(r) = Su~. (44) 

Now, according to Eq.(9) we have that 

occ oct 

p(p)dp=2 Z J" Iq~i(.°)[2d~ =2 F~ Z Z c.,c~i f r£(t,)~v(~)dp 
i i it v 

P R = ~ ~, P~Su~ = ~ ~ P~Su~ = tr(PSS). (45) 
# v g v 

which is equal to the total number of electrons N only if overlap integrals are 
explicitly taken into account when solving the Roothaan equations, or if de- 
orthogonalized NDO type wavefunctions [39] are used. In the case of simple 
NDO theory, the overlap matrix S reduces to a unit matrix and accordingly, 
diatomic terms in (45) should be neglected. 

Combining the orientational and normalization requirements we can conclude 
that only two physically significant possibilities subsist: either one uses the NDO 
wavefunctions and approximates p(p) and I(p) respectively up to an INDO and a 
CNDO level, or the NDO wavefunctions are deorthogonalized and p(p) and I(p) 
are evaluated without any approximation. These combinations, at least for p(p) 
are the exact counterparts of the position space possibilities [363. 

This theory, which has already been programmed on the CDC 6500 Computer 
of the Free University of Brussels, will be used to perform a systematic study of 
the trends in the momentum space properties of large organic molecules. The 
results of  these investigations will be the subject of subsequent publications. 
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